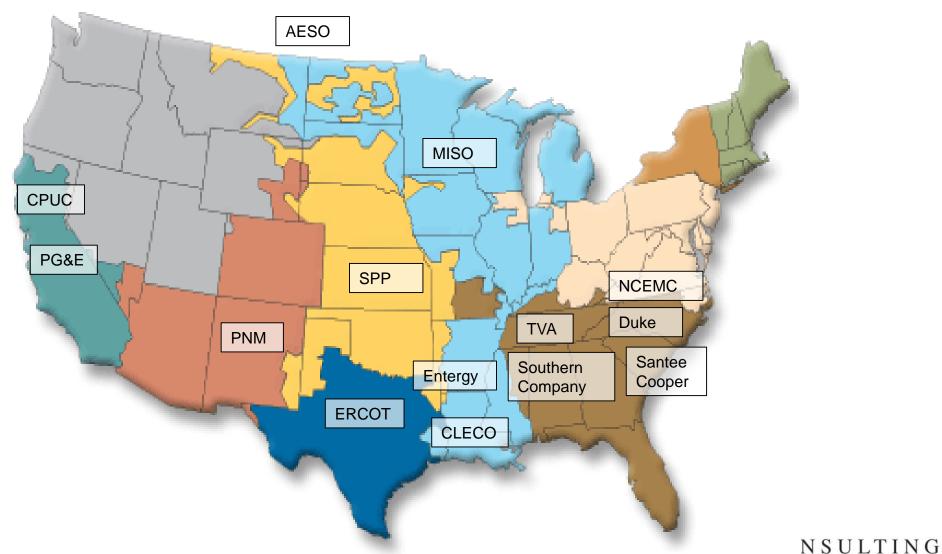
Stakeholder Meeting

Astrapé Consulting

04/23/2019

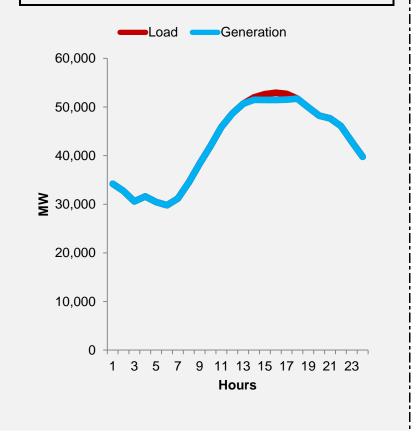
SERVM Model Overview


Strategic Energy Risk Valuation Model (SERVM)

- SERVM has over 30 years of use and development
- Probabilistic hourly and intra-hour chronological production cost model designed specifically for resource adequacy and system flexibility studies
- SERVM calculates both resource adequacy metrics and costs
- SERVM used in a variety of applications for the following entities:
 - Southern Company
 - TVA
 - Louisville Gas & Electric
 - Kentucky Utilities
 - Duke Energy
 - Progress Energy
 - FERC
 - NARUC
 - PNM
 - TNB (Malaysia)
 - Sarawak (Malaysia)

- EPRI
- Santee Cooper
- CLECO
- California Public Utilities Commission
- Pacific Gas & Electric
- ERCOT
- MISO
- PJM
- Terna (Italian Transmission Operator)
- NCEMC
- Oglethorpe Power

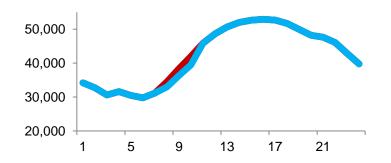
Astrapé Resource Adequacy Clients



Definitions of Existing and New Reliability Metrics

Traditional "Generic Capacity" Metrics

 $LOLE_{Cap} = 0.2 Target$


Traditional metric to capture events that occur due to capacity shortfalls in peak conditions

New "Flexible Capacity" Metrics

 $LOLE_{FLFX} = 0.2$ Target

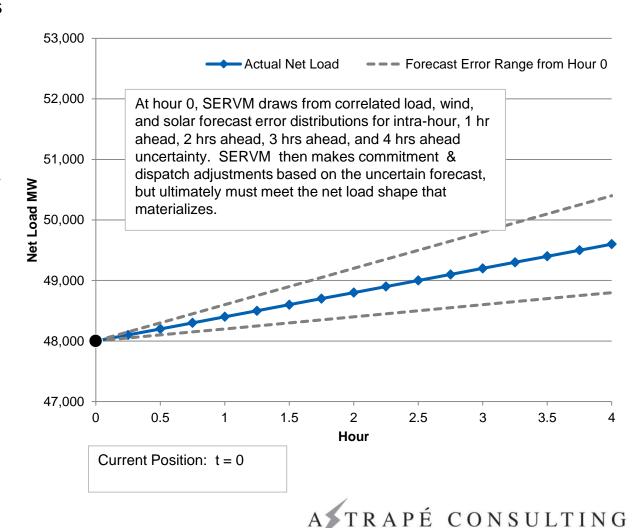
New metric to capture events due to system ramping deficiencies of longer than one hour in duration

New metric to capture events due to system ramping deficiencies inside a single hour

SERVM Framework

- Base Case Study Years (2023, 2028, 2033)
 - Weather (36 years of weather history)
 - Impact on Load
 - Impact on Intermittent Resources
 - Economic Load Forecast Error (distribution of 5 points)
 - Unit Outage Modeling (thousands of iterations)
 - Multi-State Monte Carlo
 - Frequency and Duration
 - Base Case Total Scenario Breakdown: 36 weather years x 7 LFE points = 252 scenarios
 - Base Case Total Iteration Breakdown: 252 scenarios * 10 unit outage iterations = 2,520 iterations
 - Intra Hour Simulations at 5-minute Intervals

Resource Commitment and Dispatch


- 8760 Hourly Chronological Commitment and Dispatch Model
- Simulates 1 year in approximately 1 minute allowing for thousands of scenarios to be simulated which vary weather, load, unit performance, and fuel price
- Capability to dispatch to 1 minute interval
- Respects all unit constraints
 - Capacity maximums and minimums
 - Heat rates
 - Startup times and costs
 - Variable O&M
 - Emissions
 - Minimum up times, minimum down times
 - Must run designations
 - Ramp rates

Resource Commitment and Dispatch

- Commitment Decisions on the Following Time Intervals allowing for recourse
 - Week Ahead
 - Day Ahead
 - 4 Hour Ahead, 3 Hour Ahead, 2 Hour Ahead, 1 Hour Ahead, and Intra-Hour
- Load, Wind, and Solar Volatility
 - Captures the flexibility benefit of fast ramping resources and the integration costs of intermittent resources.

1 - 4 Hour Ahead Forecast Error

innovation in electric system planning

Ancillary Service Modeling

Ancillary Services Captured

- Regulation Up Reserves
- Regulation Down Reserves
- Spinning Reserves
- Non Spinning Reserves
- Load Following Reserves

Co-Optimization of Energy and Ancillary Services

 Each committed resource is designated as serving energy or energy plus one of the ancillary services for each period

Post IRP – Preliminary Fall Analysis

Post IRP Fall 2017 Modeling

Modeled 11 Portfolios including different penetrations of the following resources

- Small, flexible GT Capacity
- Frame GT Capacity
- Combined Cycle Capacity
- Wind
- Solar
- Battery Storage

Analyzed total costs and reliability metrics of each portfolio

Implications on RFP

Based on this preliminary analysis, all technologies (gas, wind, solar, energy storage) were invited to be part of the RFP.
Dependent on actual bid pricing, a mixture of these technologies will be the best overall portfolio from a reliability and economic perspective

Other Conclusions

- Economic analysis very dependent on capital costs and PPA prices assumed for solar/wind in the actual RFP but the Fall analysis showed the following:
- A mixture of small, flexible and/or frame capacity may be economic but the smaller units will produce lower renewable curtailment and benefit reliability
- Reliability metrics showed that additional renewable resources can be integrated
- Battery storage assuming the IRP pricing was not economic however bid prices are lower than the assumptions made in the fall analysis
- As solar and wind penetrations increase, renewable curtailment increases making it less valuable

Preliminary RFP Analysis

Astrapé Evaluation Framework

20 Year NPV Analysis using SERVM

- Simulate reliability and production costs for 2023, 2028, and 2033 for all portfolios.
- Interpolate production costs between years to develop 20 year production costs.
- Include 20 years fixed costs (capacity payments, revenue requirements, fixed O&M, fixed gas transportation, transmission) for incremental portfolio
- Portfolios must meet capacity and flexibility reliability criteria of at or near 0.2 events per year

RFP Portfolio Modeling

- Step 1: Received Short list based on the PNM and HDR Evaluation
 - Split into Tier 1 and Tier 2 resources
 - Tier 1 resources represent most economic resources for each technology
- Step 2: Develop portfolios that meet reliability using the Tier 1 resources
 - Vary wind, solar, gas, battery resources to meet reliability
- Step 3: Determine the best portfolio made up of Tier 1 resources
- Step 4: Add Tier 2 resources to determine if the best portfolio improves
- Step 5: Perform sensitivity with high gas/CO2 prices
- Step 6: Develop recommendation which must meet RPS

