SERVM Strategic Energy Risk Valuation Model

Astrape Consulting Nick Wintermantel 11/10/2016

Topics

- Resource Adequacy Overview
- SERVM Model Overview
- Reserve Margin Study (2013)
- Renewable Integration Study (2015)
 - Effective Load Carrying Capability
 - Flexibility Study
 - Integration Costs

Resource Adequacy Overview

Resource Adequacy

 Resource Adequacy Definition: The ability of supply-side and demand-side resources to meet the aggregate electrical demand (NERC Definition)

Resource Adequacy Studies

Reserve Margin Study

- Goal: Calculate generating capacity deficiencies and determine the amount of capacity needed to maintain resource adequacy during peak conditions
- Purpose: Input into expansion planning processes

Effective Load Carrying Capability Study

- Goal: Determine the capacity contribution of intermittent resources
- Purpose: Necessary to calculate the system reserve margin

Flexibility Study

- Goal: Determine reliability deficiencies including both firm load shed events and renewable resource curtailment due to system ramping/startup constraints (not capacity deficiencies)
- Purpose: Provides assistance in setting appropriate parameters for resource additions and to determine system operating reserve requirements

Integration Cost Study

- Goal: Determine incremental system costs caused by adding intermittent resources
- Purpose: Used in capacity procurements and in resource selection processes

Resource Adequacy Metrics

- Loss of Load Expectation (LOLE_{CAP}): Expected number of firm load shed events in a given year due to capacity shortfalls
- Loss of Load Expectation (LOLE_{FLEX}): Expected number of firm load shed events in a given year due to not having enough ramping capability
- Loss of Load Hours (LOLH_{CAP}): Expected number of hours of firm load shed in a given year due to capacity shortfalls
- Loss of Load Hours (LOLH_{FLEX}): Expected number of hours of firm load shed in a given year due to not having enough ramping capability
- Expected Unserved Energy (EUE_{CAP}): Expected amount of firm load shed in MWh for a given year due to capacity shortfalls
- Expected Unserved Energy (EUE_{FLEX}): Expected amount of firm load shed in MWh for a given year due to not having enough ramping capability

SERVM Model Overview

Strategic Energy Risk Valuation Model (SERVM)

- SERVM has over 30 years of use and development
- Probabilistic hourly and intra-hour chronological production cost model designed specifically for resource adequacy and system flexibility studies
- SERVM calculates both resource adequacy metrics and costs

SERVM Uses

Resource Adequacy

- Loss of Load Expectation Studies
- Optimal Reserve Margin
- Operational Intermittent Integration Studies
 - Penetration Studies
 - System Flexibility Studies
- Effective Load Carrying Capability of Energy Limited Resources
 - Wind/Solar
 - Demand Response
 - Storage
- Fuel Reliability Studies
 - Gas/Electric Interdependency Questions
 - Fuel Backup/Fixed Gas Transportation Questions
- Transmission Interface Studies

Resource Planning Studies

- Market Price Forecasts
- Energy Margins for Any Resource
- System Production Cost Studies
- Evaluate Environmental/Retirement Decisions
- Evaluate Expansion Plans

Resource Commitment and Dispatch

- 8760 Hourly Chronological Commitment and Dispatch Model
- Simulates 1 year in approximately 1 minute allowing for thousands of scenarios to be simulated which vary weather, load, unit performance, and fuel price
- Capability to dispatch to 1 minute interval
- Respects all unit constraints
 - Capacity maximums and minimums
 - Heat rates
 - Startup times and costs
 - Variable O&M
 - Emissions
 - Minimum up times, minimum down times
 - Must run designations
 - Ramp rates
- Simulations are split across multiple processors linked up to the SQL Server

Resource Commitment and Dispatch

- Commitment Decisions on the Following Time Intervals allowing for recourse
 - Week Ahead
 - Day Ahead
 - 4 Hour Ahead, 3 Hour Ahead, 2 Hour Ahead, 1 Hour Ahead, and Intra-Hour
- Load, Wind, and Solar Uncertainties at each time interval (decreasing as the prompt hour approaches)
- Benchmarked against other production models such as PROSYM

1 - 4 Hour Ahead Forecast Error

Ancillary Service Modeling

Ancillary Services Captured

- Regulation Up Reserves
- Regulation Down Reserves
- Spinning Reserves
- Non Spinning Reserves
- Load Following Reserves

Co-Optimization of Energy and Ancillary Services

 Each committed resource is designated as serving energy or energy plus one of the ancillary services for each period

SERVM Framework

Base Case Study Year

- Weather (35 years of weather history)
 - Impact on Load
 - Impact on Intermittent Resources
- Economic Load Forecast Error (distribution of 5 points)
- Unit Outage Modeling (thousands of iterations)
 - Multi-State Monte Carlo
 - Frequency and Duration
- Base Case Total Scenario Breakdown: 35 weather years x 5 LFE points = 185 scenarios
- Base Case Total Iteration Breakdown: 185 scenarios * 100 unit outage iterations = 18,500 iterations
- Reserve Margin Study/ELCC Study: Hourly Simulations
- Flexibility and Integration Cost Studies: Intra Hour Simulations

Reserve Margin Study (2013)

Load Modeling: Summer Peak Weather Variability

2013 Reserve Margin Study

Year

Renewable Shapes: 30 + Years

2013 Reserve Margin Study

2013 Reserve Margin Study

Using CBO GDP approach and assuming 30% multiplier for electric load growth compared to GDP growth

Load Forecast Error Multipliers	Probability %
0.95	2.7%
0.97	14%
0.99	23.8%
1.00	19.1%
1.01	23.8%
1.03	14%
1.05	2.7%

Unit Outage Modeling

Full Outages

- Time to Repair
- Time to Failure

Partial Outages

- Time to Repair
- Time to Failure
- Derate Percentage
- Startup Failures
- Maintenance Outages
- Planned Outages
- Created Based on NERC GADS Data

Multi State Frequency and Duration Modeling vs Convolution

Study Topology and Market Assistance 2013 Reserve Margin Study

19

Demand Response

	Power Saver Peak Save	
	Program	Program
Capacity (MW)	45	20
Season	June-Sept	June-Sept
Hours Per Year	100	100
Hours Per Day	4	6

Firm load shed to maintain reserves equal to 4% of load

LOLE_{CAP} and LOLH_{CAP} Results 2013 Reserve Margin Study

Events averaged 2 hours Industry Standard: 1 day in 10 year standard = 0.1 LOLE = 21% reserve margin

Economic Optimal Reserve Margin

2013 Reserve Margin Study

22

Renewable Integration Study: Effective Load Carrying Capability Study

Incremental Effective Load Carrying Capability Generic Example Only

- Simulate Base Case:
 - LOLE_{CAP} = .20
- Add 50 MW Incremental Wind
 - LOLE_{CAP} = .19
- Add 50 MW GT Capacity
 - LOLE_{CAP} = .15
- Wind Resource reduced LOLE by 0.01 while GT resource reduced LOLE by .05
- ELCC = .01/.05 = 20%
- Incremental ELCC can also be approximated by calculating average output during EUE events.
- Average ELCC is calculate by removing entire wind portfolio and then adding it back to understand its LOLE reduction compared to GT Resources

EUE and Renewable Profiles by Hour of Day 2015 RIS Study

Wind Profile by hour of day (Secondary Axis)

PV Profile by hour of day: (Secondary Axis)

PV Tracking by hour of day (Secondary Axis)

innovation in electric system planning

	PV Fixed	PV SAT	Wind
2018 average	47.2%	62.1%	21.9%
2018 incremental	43.0%	57.2%	14.2%
	PV Fixed	PV SAT	Wind
2023 average	46.9%	61.2%	21.7%
2023 incremental	38.9%	52.1%	13.7%

SAT: Single Axis Tracking

Renewable Integration Study: Flexibility Study

What Does the Flexibility Problem Look Like?

Increase Load Following Reserves to Reduce LOLE_{FLEX} Events

- Identify LOLE_{FLEX} events and renewable curtailment (overgen) events
- Solve the deficiencies using the following approaches and calculate costs:
 - Change operating procedures (i.e. raise load following requirement)
 - Swap or add existing capacity with flexible capacity (multiple technologies)

Base Case Physical Reliability Results Varying Operating Reserve Levels 2015 RIS Study

- 2018: 16% Reserve Margin
- Spin + Reg Requirement = Varied from 8% to 16% of Load
- LOLE_{CAP} is near previous LOLE study which did not take into account flexibility problems
- LOLE_{FLEX} adds more events but are extremely low in magnitude and in duration (<10 min)
- 10%- reg + spin target is likely reasonable given the size and duration of the LOLE_{FLEX}

2018 Study Year				
Reg + Spin Target	8% of Load	10% of Load	12% of Load	16% of Load
2018 LOLE _{CAP}	0.21	0.21	0.21	0.21
2018 LOLE _{FLEX}	7.15	0.74	0.07	0.03
2018 Curtailment MWh	21,246	23,708	32,178	118,189
System Production Cost M\$	289.04	294.09	301.02	322.35

LOLE_{FLEX} Across Different Operating Reserve Requirements 2015 RIS Study

Note: Largest decrease in $LOLE_{FLEX}$ moving from 8% of Load to 10% Reg + Spin target. Slight benefit thereafter

Production Costs Across Different Operating Reserve Requirements 2015 RIS Study

Renewable Curtailment Across Different Operating Reserve Requirements 2015 RIS Study

Base Case (Monthly Basis)

2015 RIS Study

Month	LOLE _{CAP}	
Jan	-	0.02
Feb	-	0.05
Mar	-	0.21
Apr	-	0.17
Мау	-	0.07
Jun	0.06	0.02
Jul	0.10	0.01
Aug	0.05	0.01
Sep	0.00	0.03
Oct	-	0.08
Nov	-	0.04
Dec	-	0.02
Total	0.21	0.74

Integration Cost Study

2018 Wind Integration Cost Adder Calculation

Simulate Base Case:

- LOLE_{CAP} = .21; LOLE_{FLEX} = .07
- Add 50 MW Incremental Wind/Remove 6.5 MW CT (.13 ELCC * 50 MW):
 - LOLE_{CAP} = .21; LOLE_{FLEX} = .20
- Add Reserve MW until LOLE_{FLEX} = .07
 - Additional Reserves = 4 MW

Calculate System Cost Impact of Additional 4 MW Reserves

System Cost = +\$794,161

Divide by Renewable Energy

Integration Cost Adder = \$794,160 / 133,152 MWh = \$5.96/MWh

Technology	Incremental Gen (MWh)	Required Spin Increase to Maintain Base Case Reliability	Cost Increase	\$/MWh
WIND	133,152	4 MW	794,161	5.96
PV	108,011	15% of Incremental Solar Output	489,772	4.53
PV SAT	126,144	15% of Incremental Solar Output	489,772	3.88

